I. INTRODUCTION

1. The Econolite Model D-8000 Eight-Phase Controller is a full quad unit providing four concurrent and four sequential phases with the capabilities of up to six sequential and two concurrent phases. It features modular design yielding maximum flexibility in its applications. The D-8000 is recommended for control of six, seven, and eight phase intersections utilizing full or semi actuated modes with the following modular options.

 a. Actuated vehicle with Pedestrian
 b. Actuated vehicle without Pedestrian
 c. Modified density module

Figure 11001 Model D-8884 Controller
2. Solid state design utilizing DTL and TTL type integrated circuits provide trouble-free long-life operation as well as easy programming. One of the outstanding features of the D-8000 is the flexibility provided by the module options. By selecting the required module complement, the Traffic Engineer can tailor the D-8000 to virtually any semi actuated or fully actuated intersection configuration he requires.

II. GENERAL DESCRIPTION

1. The D-8000, being of modular design, is in most cases fitted with the modules required by the Traffic Engineer for a specific intersection. This yields a myriad of module-combinations that are identified by the model numbering system which is explained in the catalog price section (page 11091).

2. Operational features of the D-8000 series controllers encompass the full spectrum of capabilities required in controlling a complex intersection. Listed below are some of the more outstanding capabilities of this versatile machine.
D-8000 CONTROLLER

- **Stop Time** - This input is provided so that the timing of any interval may be stopped at any point in the interval for the purpose of adding extra intervals in the phase by means of auxiliary equipment. When stop time voltage is applied (+24V dc), the detector circuits and associated density timing and logic circuits shall continue in operation. The interrupted interval shall be retimed completely when stop time voltage is removed. Two inputs are provided, one for primary phases and one for secondary phases.

- **Hold** - Eight inputs shall be provided so that a phase timing module may be held in the rest position by the application of external voltage (+24V dc). The phase timing module will remain in the rest position even though a demand exists on other phases. When the hold voltage is removed by a coordinator or other auxiliary device, the controller will then serve the demand on the other phases subject to vehicle actuations if detectors on the held phase are being utilized. If the phase module is in the semi actuated mode, then the release of hold will cause the phase module to advance from rest to the green transfer position. While in the rest position, the phase being held will show a green and/or walk indication.

- **Force Off** - When +24V dc is applied to the force-off input, the phase module that is currently timing will be forced into the vehicle clearance period from any interval except INITIAL, ADDED INITIAL, and WALK intervals. This input is usually implemented by an auxiliary device for coordination purposes. Whenever a phase is forced off, a vehicle detection is placed on that phase. Two inputs are provided, one for primary phases and one for secondary phases.

- **Omit All Red** - By applying +24V dc to this input, the all red clearance interval is omitted even though a time is set on the all red switch. Two inputs are provided, one for primary phases and one for secondary phases.

- **Manual** - This input is provided so that an intersection may be manually controlled. A pulsed ground input will step the controller through its various intervals. The controller is usually placed in stop time for manual control. Calls are
placed on all phases for manual operation. Two inputs are
provided, one for primary phases and one for secondary phases.

f. **Omit Manual** - By placing a voltage (+24V dc) on this input,
the controller can be manually advanced only to those phases
where a demand exists.

g. **Semi-actuated Mode (K Feature)** - When voltage (+24V dc) is
applied to this input, the P2-S2 modules in the controller will
operate in a semi-actuated mode even though the phase module
is fully actuated, vehicle and pedestrian. The pedestrian and
vehicle detectors will be inhibited and the WALK indication
will come on at the beginning of green and will stay on until
the phase is released. This indication will then change to
flashing DON'T WALK which will be timed by the pedestrian
clearance interval timer then advancing into vehicle clearance
ignoring the vehicle extension and extension limit timing.
When no pedestrian timing is used the phase module will time
the INITIAL GREEN interval and advance into the REST interval
until a demand exists on the other phases. If the HOLD input
is not applied, the controller will then advance into green
transfer and vehicle clearance ignoring the VEHICLE EXTENSION
and EXTENSION LIMIT timing. It may be seen that this mode
is used whenever coordination is required.

h. **Semi-actuated Mode (K Feature Other)** - This input may be
used to control phases other than P2-S2. The operation is
the same as described for SEMI ACTUATED MODE (K FEATURE).

i. **12V ac** - Output voltage which may be used for special appli-
cations.

j. **+24V dc** - Output which is used to power external devices
such as solid state switches or Econologic.

k. **Call Away** - The controller normally rests in phase green of
the last phase to receive a call. Upon other phase demands
this phase will time a clearance period before advancing to
the next phase. When a voltage (+24V dc) is applied to this
input the controller will assume a rest in red condition after
all demand has been satisfied. The first phase to receive a
call will immediately advance to green and after satisfying
the demand will return to all red until other phases receive detections. This feature may be utilized during periods of light traffic to eliminate the necessity of waiting through a vehicle clearance interval before transferring to the phase with a call. Two inputs are provided, one for primary phases and one for secondary phases.

1. Guaranteed Passage Time - This feature provides the option of adding the balance of time between the MINIMUM GAP interval and the VEHICLE EXTENSION interval in the event of gap out as a result of the TIME WAITING GAP REDUCTION feature. If gap out has occurred at the end of a platoon of traffic, the extra green time allows the last car of that platoon sufficient time to clear the intersection before terminating phase green. No vehicle call is left on the phase. This feature is in effect when GUARANTEED PASSAGE TIME input is grounded. Two inputs are provided, one for primary phases and one for secondary phases.

m. 5k Hz - This output is used in conjunction with solid state switches.

n. 4 PPS Clock Pulses - Output which puts out four pulses per second and may be used to time auxiliary devices.

o. Extension Limit Inhibit - This feature allows external logic, timers, or coordinators to time the extension limit portion of a phase which is timing. When the EXTENSION LIMIT INHIBIT input is grounded, the timing operation of the extension limit timer within the controller is inhibited. A FORCE OFF command should be applied to terminate the external extension limit timing interval. This feature is used whenever a coordinator is used in conjunction with the controller. Two inputs are provided, one for primary phases and one for secondary phases.

p. External Start/Pre-empt - When voltage (+24V dc) is applied to this input, the controller will immediately go to a preselected restart condition; i.e., main street amber. When this command is applied the controller does not advance through, or time any vehicle or pedestrian clearance intervals. All controller timers are reset to zero.
q. **Special Skip** - Whenever ground is applied to this input, the associated phase module will be skipped even though a call exists. The phase module that has special skip applied to it may still receive a detection and place it in memory. This call will be served whenever the skip condition is removed. This mode is used whenever a change from normal phase rotation is required. Eight inputs are provided, one for each phase.

r. **Check** - A separate output from each phase module which indicates the presence of a detection in its memory.

s. A five position function select switch located on each Actuated Phase Module provides the following positions:

1. **NL** - Non-locking detectors for use with presence type detectors. A call is registered only when a vehicle is present in the detection area.

2. **L** - Locking detectors for use with pulse-type detectors. Any call is locked in memory until the phase has been answered.

3. **VR** - Automatic vehicle recall for the phase.

4. **PR** - Automatic pedestrian recall for the phase. If this switch setting is used on an Actuated Phase Module without pedestrian timing, it becomes a VR (automatic vehicle recall).

5. **EL** - Recall to Extension Limit. This setting causes the full Extension Limit to be timed by simulating the continuous presence of a vehicle actuation from the street.

f. Coded Interval Bits (three for Primary Phases and three for Secondary Phases) are brought out of the controller which may be easily decoded to give the exact interval timing at any point in time. The truth table is as follows:
3. The eight phases of the D-8000 series are designated as primary (timing in a sequential manner) or secondary (assigned in pairs and timed concurrently with primary phases). For example: In a quad configuration, P1 and P2 will time with P5/S1 and P6/S2; while P3 and P4 will time with S3 and S4. Six primary phases and one pair of secondary phases may be obtained by inserting a printed circuit jumper board in the connector located between modules P4 and P5/S1 (see Figure 11003).

![Figure 11003 D-8000 Series Module Placement](image)

To obtain four primary and four (two pairs) secondary phases, the jumper board would be plugged in between modules P6/S2 and S3. The primary and secondary phases are then programmed by inserting jumper pins on a printed circuit matrix board.
4. Figure 11004 illustrates a standard quad intersection and its corresponding sequence flow.

To program this intersection the jumper board would be plugged in between modules P6/S2 and S3. The matrix would be pinned as illustrated in Figure 11005. In this phasing S1 and S2 may time concurrently with P1 or P2 (only two phases may time concurrently). The jumper in the third set of holes in the P2/S1 and P4/S2 position establishes the last primary phase in the combination.

"Quad" phasing is only one of the many different ways the D-8000 may be programmed.
III. REFERENCE DATA

1. General: These specifications describe the requirements for a multi-phase (2 through 8 phases) controller that utilizes integrated circuitry, digital timing, and modular construction.

2. Case: All modules shall be housed in an attractive aluminum housing having the following dimensions: Height: 19"; Width: 30 1/2"; Depth: 9 3/4". A printed circuit motherboard containing connectors for 25 modules shall be mounted at the rear of the case.

3. Modules: Each module shall be easily removable from the front of the controller without the use of special tools. Each controller shall contain the following modules: 1 power supply module, 1 input interface module, 2 output interface modules, 3 sequence control modules, 2 interval control modules and at least 2 phase timing modules. Modules shall be available so that any or all of the phases will operate with or without actuated pedestrian timing, and with or without modified density. A module shall be available which will provide an exclusive actuated pedestrian phase.

4. Power Supply Module: The fuse protected power supply shall provide the necessary regulated voltages and currents required for proper internal and external controller operation. The power supply shall also provide over-voltage and short circuit protection.

5. Input and Output Interface Modules: Separate input and two output interface modules which are mechanically keyed to prevent improper module insertion into the controller shall be provided. Each module shall contain all necessary level shifter and buffer circuitry. In addition each module shall be provided with an MS type connector which shall also be keyed to prevent improper interface connections at the controller.

6. Actuated Vehicle Module: The actuated vehicle module shall contain rotary thumbwheel switches for setting the length of each interval to be timed by the module; initial interval, vehicle interval, extension limit, vehicle clearance interval, and all red interval. Two indicator lights shall be provided; one to indicate a vehicle call, the other shall flash during the preceding vehicle clearance interval when this phase is next, and it shall be illuminated while this phase is timing. A five position rotary switch for setting the non-lock, lock, vehicle recall and extension limit mode shall be provided.
7. Actuated Vehicle and Pedestrian Module: This module shall provide the following rotary switches and indicators, in addition to those provided by the actuated vehicle module: walk and pedestrian clearance intervals, pedestrian recall, and pedestrian call indicator light.

8. Modified Density Module: The modified density module shall contain the rotary switches and circuitry to provide added initial interval timing, and time waiting-gap reduction timing, and an indicator light which flashes at each vehicle actuation on this phase.

9. Sequence Control Modules: The sequence control module shall determine and establish the phase order. (Three modules are required.)

10. Interval Control Module: The interval control module shall determine and establish the interval order. This module shall contain the necessary indicator lights to indicate the controller interval.

11. Timing Periods: The following adjustable time periods shall be provided:

12. Actuated Vehicle Module:
 a. Initial Interval: 0-99 seconds
 b. Vehicle Extension: 0-9 3/4 seconds
 c. Extension Limit: 0-99 seconds
 d. Vehicle Clearance: 0-9 3/4 seconds
 e. All Red: 0-9 3/4 seconds

13. Actuated Vehicle and Pedestrian Module:
 a. Initial Interval: 0-99 seconds
 b. Walk Interval: 0-39 seconds
 c. Pedestrian Clearance: 0-39 seconds
 d. Vehicle Extension: 0-9 3/4 seconds
e. Extension Limit: 0-99 seconds
f. Vehicle Clearance: 0-9 3/4 seconds
g. All Red: 0-9 3/4 seconds

14. Modified Density:
 a. Actuations Before: 0-99 seconds
 b. Seconds Per Actuation: 0-2 1/4 seconds
 c. Time Waiting: 10-100 seconds
 d. Minimum Gap: 0-9 3/4 seconds

15. Power Requirements: The controller shall operate on a 120V 60 Hz power source, and shall not consume more than 345 watts of power under full load.

16. Signal Control Outputs: Each signal control output shall be capable of operating one 170-220 ohm relay or several solid state switches at 24V dc. Interval bits shall have a 1000 ohm output impedance.

17. Calibration Accuracy and Temperature Range: The accuracy of each program shall correspond to the accuracy of the 60 Hz ac source without variance, with an ambient temperature range of -30°F to +165°F, with an input voltage range of 105V to 130V.
DISCONTINUED